
* Corresponding author: Ismail Oluwatobiloba Sule-Odu 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

AI-driven threat intelligence for real-time cybersecurity: Frameworks, tools, and 
future directions 

Kelvin Ovabor 1, Ismail Oluwatobiloba Sule-Odu 2, *, Travis Atkison 1, Adetutu Temitope Fabusoro 3 and Joseph 
Oluwaseun Benedict 4 

1 Computer Science, The University of Alabama, Tuscaloosa, Alabama, USA. 
2 Computer Science, Maharishi International University (MIU), Fairfield, IA, USA. 
3 Education Policy Organization and Leadership, University of Illinois, Urbana Champaign, IL, USA. 
4 Information Security and Digital Forensics, University of East London, UK. 

Open Access Research Journal of Science and Technology, 2024, 12(02), 040–048 

Publication history: Received on 28 September 2024; revised on 06 November 2024; accepted on 09 November 2024 

Article DOI: https://doi.org/10.53022/oarjst.2024.12.2.0135 

Abstract 

AI-driven threat intelligence is transforming cybersecurity by enhancing real-time threat detection, analysis, and 
response capabilities. This paper reviews state-of-the-art AI frameworks, machine learning models, and tools that 
support threat intelligence, providing a survey of current research in the field and identifying challenges and future 
directions for real-time cybersecurity. Techniques such as supervised and unsupervised learning, reinforcement 
learning, and natural language processing (NLP) contribute to the robustness of threat detection, while evolving 
frameworks and ethics guide AI implementation in security operations. By addressing the increasing sophistication of 
cyber threats, AI-driven approaches aim to create a proactive, dynamic cybersecurity posture that can keep up with 
evolving cyber adversaries. 
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1. Introduction

In today’s digital landscape, organizations face an unprecedented array of cyber threats. Traditional cybersecurity 
defenses, largely reactive and manual, are insufficient in countering sophisticated attacks that continuously adapt to 
bypass defenses [1, 2]. As a result, AI-driven threat intelligence has emerged as a vital strategy in cybersecurity [3], 
leveraging machine learning, deep learning, and big data analysis to enable rapid, proactive responses to cyber threats 
[4, 5]. This technology not only strengthens threat detection and prevention but also enables organizations to 
understand and anticipate potential vulnerabilities. 

AI-driven threat intelligence shifts the paradigm from detecting past-known threats to predicting new ones, enabling 
organizations to preemptively address vulnerabilities and mitigate the impact of attacks. With these advancements [6], 
AI is poised to become indispensable in cybersecurity, leading to faster, more accurate, and automated threat detection. 

1.1. Background and Motivation 

The necessity of AI-driven threat intelligence is underscored by several key factors: 

 Addressing the Rise of Advanced Persistent Threats (APTs): APTs are a class of stealthy and continuous
hacking processes that target specific entities to gain intelligence over an extended period [7, 8]. Traditional
detection mechanisms are often too rigid to detect the subtle, long-term behavioral anomalies of APTs. AI-
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driven models, however, can continuously learn and adapt, identifying deviations from established behavior 
patterns indicative of APT activity [9]. 

 Managing Volume and Diversity of Threat Data: Modern networks generate vast quantities of data from 
devices, applications, and endpoints [10]. This complexity requires systems that can analyze diverse data types 
(structured and unstructured) in real-time, a task AI is well-suited for with its ability to scale across multiple 
data sources [11]. 

 Overcoming the Limitations of Manual and Rule-based Approaches: Legacy systems typically rely on 
manually created rules and static configurations that can be easily circumvented by new or evolving threats 
[12, 13]. AI-driven systems use dynamic learning and pattern recognition, allowing cybersecurity measures to 
adapt autonomously and proactively [13]. 

1.2. Scope and Objectives 

This paper aims to provide an in-depth overview of AI-driven threat intelligence by focusing on three main objectives: 

 Examine AI frameworks and tools that support real-time threat intelligence in cybersecurity, evaluating their 
effectiveness and applicability [14, 15]. 

 Survey recent research trends on machine learning, deep learning, and NLP applications in threat detection, 
prevention, and response [16]. 

 Identify challenges and propose future directions that can guide improvements in AI-driven threat 
intelligence systems, with attention to resilience, transparency, and ethical considerations [17]. 

2. AI Frameworks and Models for Real-time Threat Intelligence 

AI-driven threat intelligence utilizes various machine learning models to detect and respond to threats dynamically. The 
following sections discuss the types of machine learning models applied in cybersecurity and their specific applications 
in identifying, classifying, and mitigating cyber threats. 

2.1. Supervised Learning Models 

Supervised learning models require labeled datasets to train algorithms in classifying threats accurately: 

 Model Training on Labeled Threat Data: Supervised learning models learn from historical data by 
associating specific inputs with known outcomes. This is particularly effective in identifying types of malware 
or phishing attacks, where existing attack signatures are available [18, 19]. 

 Applications in Malware and Phishing Detection: Techniques like decision trees, support vector machines 
(SVMs), and neural networks are commonly used. For instance, neural networks can analyze a phishing email’s 
content and sender information, learning to flag emails with suspicious characteristics based on prior examples 
[20]. 

2.2. Unsupervised and Semi-supervised Learning Models 

Unsupervised models play a crucial role in anomaly detection, a cornerstone of cybersecurity applications: 

 Clustering and Anomaly Detection: With unsupervised models, threat detection becomes more flexible, as 
these models are not restricted to labeled datasets. For example, clustering algorithms identify outliers within 
network traffic, helping detect patterns indicative of cyber-attacks [18, 21]. 

 Semi-supervised Learning with Limited Labeled Data: Often, cybersecurity data lacks comprehensive 
labeling. Semi-supervised learning allows models to learn from a small set of labeled data combined with a 
larger volume of unlabeled data, thereby improving detection capabilities for unknown threats [22, 23]. 

2.3. Reinforcement Learning 

Reinforcement learning (RL) supports real-time, adaptive responses by learning from environmental feedback: 

 Adaptive Security Policies: RL algorithms can autonomously refine policies based on success metrics 
(rewards), optimizing response strategies to contain threats effectively [6, 24]. 

 SIEM System Integration: In Security Information and Event Management (SIEM) systems, RL-based 
automation can prioritize alerts, automate threat responses, and refine defense mechanisms over time, 
enabling continuous improvement in threat response [25, 26]. 
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2.4. Natural Language Processing (NLP) 

NLP allows for interpreting unstructured data, such as threat reports, social media, and cybersecurity forums: 

 Text Mining for Threat Intelligence: NLP-based text mining extracts threat information from textual data, 
identifying keywords and entities related to potential attacks [27, 28]. 

 Contextual Threat Analysis: NLP enhances the contextual analysis of threats by interpreting intent and 
relevance, which is crucial in threat intelligence operations to discern between benign and malicious activities 
[29, 30]. 

2.5. Deep Learning Techniques 

Deep learning’s multi-layered architecture enables it to detect intricate threat patterns: 

 Applications in Fraud Prevention and Predictive Analytics: Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) help in recognizing complex fraud patterns, while Generative Adversarial 
Networks (GANs) simulate potential threats, improving the resilience of defense mechanisms [31, 32]. 

 Pattern Recognition for Unknown Threats: Deep learning models’ ability to identify anomalies and 
previously unseen threats has become essential in detecting zero-day vulnerabilities and other novel attack 
forms[33]. 

3. Tools and Frameworks in AI-driven Threat Intelligence 

Several tools and platforms integrate AI with cybersecurity operations, automating threat intelligence and facilitating 
real-time responses. 

3.1. IBM QRadar Advisor with Watson 

IBM QRadar Advisor uses IBM Watson’s cognitive abilities to analyze unstructured data and enhance threat detection: 

 NLP for Threat Contextualization: QRadar Advisor processes security reports, social media, and threat 
intelligence feeds to provide contextual analysis, enabling security teams to prioritize significant threats [34, 
35]. 

 Enhanced Anomaly Detection: Using machine learning, QRadar analyzes large volumes of security logs to 
detect unusual behavior indicative of security breaches [36]. 

3.2. Microsoft Azure Sentinel 

Azure Sentinel is a scalable, cloud-based SIEM that uses machine learning for multi-cloud threat detection: 

 Scalable Data Analysis: Azure Sentinel can process diverse datasets across cloud environments, applying 
machine learning to detect potential threats in real time [37, 38]. 

 Integration with Microsoft’s Security Ecosystem: Azure Sentinel’s integration with Microsoft’s security 
resources enables it to provide comprehensive threat intelligence by leveraging global datasets, facilitating 
more accurate and timely responses [39]. 

3.3. Darktrace 

Darktrace’s self-learning AI autonomously identifies and mitigates cyber threats by continuously adapting to network 
behavior: 

 Unsupervised Learning for Novel Threats: Darktrace employs unsupervised models to autonomously detect 
deviations from typical behavior, making it effective for discovering previously unknown threats [40, 41]. 

 Real-time Threat Detection and Response: Darktrace’s ability to respond to threats as they emerge helps 
organizations address zero-day vulnerabilities more effectively [42, 43]. 

3.4. FireEye Threat Intelligence Platform 

FireEye’s threat intelligence platform combines machine learning and threat data sharing for advanced threat detection: 
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 Malware and Intrusion Detection: FireEye’s platform applies machine learning to enhance malware 
detection accuracy, aiding in the identification of sophisticated attack techniques [44]. 

 Collaborative Data Sharing: Through shared threat intelligence, FireEye’s platform allows organizations to 
leverage collective insights, strengthening defenses across the cybersecurity landscape [45]. 

4. Survey of Research in AI-driven Threat Intelligence 

This section surveys recent advancements in research related to AI applications in threat intelligence. 

4.1. Research on Predictive Analytics and Threat Detection 

Predictive models provide a proactive approach to threat intelligence: 

 Techniques for Threat Scoring: Researchers are developing algorithms that assign risk scores to potential 
threats, allowing security teams to prioritize mitigation efforts based on threat severity [46-48]. 

 Machine Learning in Threat Vector Prediction: Studies focus on how machine learning can predict likely 
attack vectors by analyzing historical data, enhancing organizational preparedness [49-51]. 

4.2. Studies on NLP in Cybersecurity 

NLP is critical in analyzing unstructured data sources for threat detection: 

 Text Mining Innovations: Recent studies focus on text mining to extract insights from open-source 
intelligence, such as threat data from forums, social media, and reports [27, 52, 53]. 

 Multilingual NLP for Global Threat Monitoring: Research is being conducted to adapt NLP for multilingual 
threat detection, essential for international organizations dealing with global cyber threats [54-57]. 

4.3. Research on Anomaly Detection in Network Security 

Anomaly detection remains a pivotal aspect of AI-driven threat intelligence: 

 Clustering Techniques: Clustering methods, such as k-means and DBSCAN, identify patterns in network 
traffic, enabling real-time threat detection [58, 59]. 

 Deep Learning for Real-time Anomaly Detection: Deep learning models are increasingly applied to detect 
high-dimensional anomalies within large network environments [60]. 

4.4. Adversarial AI in Cybersecurity 

Adversarial AI is both a tool and a threat to cybersecurity: 

 Evasion Tactics and Defense Mechanisms: Research explores adversarial AI that creates inputs to deceive AI 
models, while also developing defense mechanisms to counter these tactics [61, 62]. 

 Enhancing Model Robustness: Defensive techniques, such as adversarial training, are being explored to make 
models more resistant to deception by adversarial samples. 

4.5. Reinforcement Learning Applications 

Reinforcement learning has demonstrated potential in automating threat responses: 

 Decision-making Automation: RL models optimize security responses by learning from past decisions, 
effectively automating the prioritization and response process [61]. 

 Case Studies in SIEM Systems: Research highlights RL’s success in enhancing SIEM automation by adapting to 
evolving threats and optimizing response strategies [63, 64]. 

5. Challenges and Limitations of AI-driven Threat Intelligence 

While AI-driven threat intelligence offers numerous benefits, it also faces challenges. 

5.1. Data Quality and Availability 

Data quality is a critical factor for AI model accuracy: 
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 Challenges in Data Labeling and Collection: Collecting labeled data for cybersecurity is difficult and costly, 
resulting in models that may lack robustness [23]. 

 Imbalanced Data Challenges: In cybersecurity, benign data often far exceeds malicious samples, leading to 
models that may struggle with accurate threat detection [65]. 

5.2. Adversarial Attacks 

AI models are vulnerable to adversarial attacks: 

 Impact of Adversarial Samples: Attackers can use adversarial inputs to bypass AI-driven security measures, 
leading to false negatives in threat detection [66]. 

 Mitigating Adversarial Vulnerabilities: Techniques such as adversarial training help models withstand 
evasion attempts by adversaries [66]. 

5.3. Interpretability and Transparency 

The complexity of AI models can hinder interpretability: 

 Challenges in Model Explainability: As deep learning models grow more complex, explaining decisions to 
non-technical stakeholders becomes difficult, impacting trust [67]. 

 Efforts to Improve Explainability: Techniques like SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) aim to make AI decisions more understandable [68]. 

5.4. Ethical and Privacy Concerns 

The ethical use of AI in threat intelligence is a significant concern: 

 Balancing Privacy and Threat Monitoring: Ensuring privacy while monitoring for threats requires careful 
management of data collection practices. 

 Ethical Implications of Automated Intelligence: Unregulated AI-driven intelligence gathering raises 
concerns over potential abuses, emphasizing the need for ethical frameworks. 

6. Future Directions 

6.1. Enhanced Real-time Analytics 

Advancements in real-time analytics promise greater scalability and privacy: 

 Federated Learning: Federated learning enables models to train on decentralized data sources, enhancing 
privacy in real-time analytics. 

 Edge Computing for Scalable Analysis: Lightweight models for edge devices reduce latency, allowing for 
faster localized threat detection. 

6.2. Quantum Computing in Cybersecurity 

Quantum computing presents new possibilities and challenges for cybersecurity: 

 Quantum-enhanced Encryption: Quantum algorithms can secure data more effectively, but also pose threats 
to existing encryption methods. 

 Research into Quantum-resistant Algorithms: Quantum-resistant encryption is essential to safeguard data 
as quantum computing advances. 

6.3. Multimodal Threat Intelligence 

Combining various data sources allows for more comprehensive threat intelligence: 

 Holistic Data Analysis: Multimodal approaches offer a fuller picture by integrating data from multiple sources, 
strengthening threat assessment accuracy. 
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6.4. AI Ethics and Governance Frameworks 

Establishing ethical standards for AI in cybersecurity will ensure responsible use: 

 Transparency and Fairness Standards: Ethical frameworks guide the responsible implementation of AI, 
fostering trust and accountability in cybersecurity applications. 

7. Conclusion 

AI-driven threat intelligence is revolutionizing cybersecurity by providing advanced capabilities for real-time detection 
and response to ever-evolving cyber threats. By analyzing vast amounts of data and identifying patterns that indicate 
malicious activities, AI enhances the speed and precision of threat detection, enabling organizations to mitigate risks 
proactively. Moreover, AI can automate incident response, reducing the burden on security teams and ensuring timely 
intervention to prevent potential breaches. 

Despite these advantages, significant challenges remain. Issues such as data quality can impact the effectiveness of AI 
models, as inaccurate or biased datasets may lead to false positives or missed threats. Additionally, the interpretability 
of AI decisions poses a challenge, as the “black box” nature of many AI algorithms can make it difficult for cybersecurity 
professionals to understand or justify AI-driven actions. Ethical considerations, including privacy concerns and the risk 
of algorithmic bias, further complicate the deployment of AI in security operations. 

Looking ahead, emerging technologies such as federated learning and quantum computing hold great promise for 
enhancing the resilience and efficiency of AI in cybersecurity. Federated learning allows for decentralized training of AI 
models across multiple devices, improving data privacy while enabling the development of robust models that learn 
from diverse, distributed datasets. Quantum computing, on the other hand, has the potential to revolutionize 
cryptography and data processing, offering unprecedented computational power to tackle complex security challenges. 
As these advancements mature, they will play a critical role in creating adaptive and robust cybersecurity frameworks, 
making AI an indispensable tool in the defense against increasingly sophisticated cyber threats. 
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