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Abstract 

Cannabis sativa has been used for thousands of years for recreational, medicinal, or religious purposes. Another culture 
technique is the most viable and efficient method of producing homozygous doubled haploid plants within a short 
period. The most widely extended approaches to obtain doubled haploids (DHs) have traditionally been based on the 
use of haploid cells of male or female origin to induce their development as haploid embryos by the application of 
different stresses under in vitro conditions. They are the so-called in vitro approaches. Thus, the long process of 
conventional breeding methods can be reduced by homozygosity in early generations. The recessive alleles could be 
obtained and selected earlier due to the homozygosity of doubled haploids (DHs) lines. Double haploid technology (DH) 
is an essential tool in plant breeding, enabling the rapid production of homozygous lines. However, doubled haploids 
(DH) were not highly relevant in plant breeding until researchers at the Department of Botany in the University of 
Delhi, India, reported a major breakthrough in the production of haploids from anther culture in Datura innoxia (Guha 
and Maheshwari, 1964, 1966). Their research revolutionized the use of doubled haploid (DH) technology in plant 
breeding worldwide. However, the practical application of this technology in Cannabis sativa improvement is still 
limited by various factors that influence culture efficiency. Cannabis sativa L. has been categorized as recalcitrant to 
doubled haploid (DH) induction and androgenesis induction, although very few embryos can be developed. However, 
the potential of in vitro anther culture in Cannabis sativa is yet to be completely exploited mainly due to the recalcitrant 
genetic backgrounds in Cannabis sativa.  
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1. Introduction

The wild noxious weed Cannabis sativa L. belongs to the family Cannabaceae is a dioecious plant, producing male and 
female flowers on separate unisexual individuals, a trait regulated by an XY chromosome sex determination system [1-
37]. Cultivation and use of cannabis plants for recreational, medical, and industrial use were strictly banned and 
severely limited the scientific research in the field [1-37]. Owing to strict legal regulations, the plant remained 
unexplored for its incredible potential in drug discovery for an extended period until it was legalized for medical use in 
many countries around the globe [1-38]. Nowadays, Cannabis is the centre of many scientific studies, which mainly focus 
on its chemical composition and medicinal properties [1-38]. The CANNUSE database (Database URL: 
http://cannusedb.csic.es) provides an organized information source for scientists and general public interested in 
different aspects of Cannabis use [39]. The main aim of the CANNUSE database is to gather and organize the abundant 
information on traditional Cannabis use in a simple manner [39].  
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Cannabis sativa and Cannabis indica are the native of Indian origin found as wild noxious weed in the foothills of Indian 
Himalayan Region and other parts of India, China, Nepal, Bhutan, Sri Lanka, Pakistan, Afghanistan, Persian, Iran, and 
Morocco and plains of Pamir (a high mountain range centered in eastern Tajikistan with extensions into Afghanistan, 
the Republic of China and Kyrgyzstan) [1-38, 262-265]. Cannabis sativa is cultivated as a crop in different regions of 
India but it is also found as a weed in different crops [1-38, 262-265]. It is a common weed species of different kharif 
crops (Dhillon, 2024) [41-43]. It is also documented as a weed species in wheat crop (rabi crop) fields in the state of 
Punjab, India [41-43]. This noxious weed Cannabis sativa is a biggest problem for the agriculture farming in India. 
However, the money spent and labour is very expensive to remove this weed than agriculture farming in India. Now 
days Cannabis sativa is a globally domesticated, cultivated and introduced species occurring in North and South 
America, Europe, Africa, Australia, Asia and other parts of world [1-38]. These cannabis species are hybrid varieties and 
known for very high levels of THC (0.3 to 38%) as compared to wild noxious weed found in all the parts of India [1-38, 
23-265]. 

Female Cannabis sativa flowers have densely packed glandular structures called trichomes that store the 
phytocannabinoids, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) which must be decarboxylated 
by heat to produce Δ9-tetrahydrocannabinol (THC: intoxicating) and cannabidiol (CBD: non-intoxicating) [1-38]. The 
two cannabinoids, the most well known for their therapeutic properties are, Δ9-tetrahydrocannabinol (THC) and 
cannabidiol (CBD) [1-35].  

Today Cannabis sativa continues to be the most used drug in the world [1-38, 262-265]. Research showed that cannabis 
use is associated with a wide range of adverse health consequences that may involve almost every physiological and 
biochemical system including respiratory/pulmonary complications such as chronic cough and emphysema, 
impairment of immune function, and increased risk of acquiring or transmitting viral infections such as HIV, HCV, and 
others [1-38]. Both Medical Cannabis sativa (Marijuana or drug type) and Industrial Cannabis sativa (hemp or fiber type) 
are used for controlling numerous diseases, such as chronic pain, asthma, rheumatoid arthritis (RA), wound healing, 
constipation, multiple sclerosis (MS), cancer, inflammation, glaucome, neurodegenerative disorders (Epilepsy-seizure 
disorder, Alzheimer’s disease, Parkinson’s disease, dengue viral disease, Huntington’s disease, Tourette’s syndrome, 
Dystonia, Lennox-Gastaut Syndrome (LGS) and Dravet Syndrome (DS), Obesity, weight loss, anorexia, and emesis, 
osteoporosis, schizophrenia, cardiovascular disorders, sleep disorders, Traumitic brain injury (TBI), Post traumetic 
stress injury, drug addiction (Marijuana), AIDS Wasting syndrome, Amyotrophic lateral sclerosis (ALS), depression and 
anxiety, diabetes, migraine (headache disorder), Covid-19 (SARS-CoV-2), Leishmaniasis (Kala-Azar), dengue fever, 
monkeypox, Nipah virus, Lumpy skin vital disease of cattle, and metabolic syndrome related disorders, are being treated 
or have the potential to be treated by cannabinoid agonists/ antagonists/cannabinoid-related compounds [1-38]. 

Anther culture technique is the most viable and efficient method of producing homozygous doubled haploid plants 
within a short period [43-103-116]. However, the practical application of this technology in Cannabis sativa 
improvement is still limited by various factors that influence culture efficiency [104, 106]. Cannabis sativa L. has been 
categorized as recalcitrant to doubled haploid (DH) induction [104, 106]. Double haploid technology (DH) is an essential 
tool in plant breeding, enabling the rapid production of homozygous lines. This experimental pathway was first 
discovered by Guha and Maheswari in 1964, while working with in vitro cultured anthers of Datura innoxia [43, 44, 45]. 
The plants derived from doubled haploid (DH) techniques are completely homozygous breeding lines that can be 
produced by anther or microspore culture within a year, instead of waiting for more than five generations of inbreeding 
cycles [43-103-116]. Moreover, theoretically, no further segregation can be expected from the developed doubled 
haploid (DH) plants, which makes them useful as a fixed homozygote mapping population for different molecular 
genetic studies [43-103-116]. Each plant developed through in vitro anther culture could be a potential homozygous 
line, which can be useful to study phenotypic variation for desirable traits [43-103-116]. The double haploid (DH) lines 
are also ideal for genetic mapping of agro-morphological and complex traits [43-103-116]. Advantages of doubled 
haploid (DH)s are quickest homozygosity and uniformity [43-103-116]. However, there are numerous drawbacks, 
including segregation ratio distortion, the incidence of albinism, a limited and frozen crossover, which significantly 
limits their application [43-103-116]. However, the potential of in vitro anther culture in Cannabis sativa is yet to be 
completely exploited mainly due to the recalcitrant genetic backgrounds in Cannabis sativa [104, 106]. Among the 
several factors, the genotype of the explants, growing conditions of the donor plants, media composition including 
macro-and micronutrients, vitamins, carbohydrates, organic adjutants, and growth regulators have been identified to 
influence the culture efficiency [43-103-116]. In the following section, the application of in vitro anther culture and 
double haploid (DH) production has been updated and discussed. 
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2. In vitro Anther culture and double haploid (DH) 

Another culture (AC) techniques can produce homozygous doubled haploid (DH) lines within one generation [43-103-
116]. Thus, the long process of conventional breeding methods can be reduced by homozygosity in early generations 
[43-103-116]. The recessive alleles could be obtained and selected earlier due to the homozygosity of doubled haploid 
(DH) lines [43-103-116]. Doubled haploid (DH) plant production methods have improved and led to accelerating the 
breeding of new varieties and hybrids [43-103-117]. However, doubled haploids (DH) were not highly relevant in plant 
breeding until researchers at the Department of Botany in the University of Delhi, India, reported a major breakthrough 
in the production of haploids from anther culture in Datura innoxia (Guha and Maheshwari, 1964, 1966) [43, 44, 45]. 
Their research revolutionized the use of doubled haploid (DH) technology in plant breeding worldwide [43, 44, 45]. 
Thereafter through the major discovery of induction of haploids through interspecific crosses followed by embryo 
culture as a promising method for obtaining haploids in barley (Hordeum vulgare L.) (Kasha and Kao, 1970) [80]. To 
date, doubled haploid (DH) technology has been used in cultivar development in self fertilizing species, or in inbred line 
development for their further use in producing hybrids of out crossing species [43-103-116]. The in vitro procedure 
using androgenesis (anther or microspore culture) and gynogenesis (unfertilized egg cell) has been used to produce 
doubled haploids (DH) [43-103-116]. Androgenesis refers to culturing immature anther or microspores from the 
immature pollen grain in artificial media to isolate haploid cells that are then chromosome doubled using colchicine, 
oryzalin, caffeine, trifuralin, or phosphoric amides) or gaseous i.e. nitrous oxide to develop DH [43-103-116]. However, 
haploid production by in vitro culture is a highly technical procedure; labour-intensive, time-consuming and costly; and 
more importantly, species- and genotype-dependent [43-103-116]. Other constraints associated with use of this 
technology are the low rate of embryogenesis and regeneration, high frequency of albinism, segregation distortion, and 
the low frequency of chromosome doubling to obtain DH [43-103-116]. This technology has been standardized and 
routinely used for production of DH in barley, brassica, oat, rice, and triticale [43-103-116]. These methods are widely 
used in many crop plants such as barley, rapeseed, and maize etc [43-52-103-116]. The culture conditions of anther 
culture (induction medium, growth regulators, carbon source, temperature etc.) influence the efficiency of anther 
culture [43-103-116]. Double haploids (DH) have become a powerful tool to assist in different basic research studies, 
and also in applied research [52]. 

Isolated microspores, when given the optimal combination of culture conditions and stresses, can be diverted from the 
normal gametophytic developmental pathway to a sporophytic pathway, and subsequently produced embryos and 
haploid or doubled haploid (DH) plants [43-103-117]. The production of doubled haploid (DH) plants from microspores 
is an important technique used in plant breeding and basic research [43-103-117]. Doubled haploid (DH) technology is 
a rapid method for developing homozygous lines, which can be used to accelerate crop improvement programs [43-
103-117]. Commercial varieties developed through doubled haploid (DH) protocols have been reported for many crops, 
such as wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), triticale (x Triticosecale Wittm.), rice (Oryza sativa 
L.), Brassica spp., eggplant (Solanum melongema L.), pepper (Capsicum annuum L.), asparagus (Asparagus officinalis L.), 
and tobacco (Nicotiana tabacum L.) [43-103-117]. A plethora of other uses for isolated microspore culture has arisen 
and this subject has been reviewed [43-103-117]. 

This experimental pathway was first discovered by Guha and Maheswari in 1964, while working with in vitro cultured 
anthers of Datura innoxia [43, 44, 45]. Later on, many different research groups have reproduced their findings in many 
other species and genera, making this experimental phenomenon a powerful and widespread tool to produce DHs [51]. 
However, not all the species respond equally to the induction of this process [43-103-116]. Some species, considered 
models for the study of this phenomenon, respond fairly well [51]. This is the case of certain lines of rapeseed (Brassica 
napus), tobacco (Nicotiana tabacum), or barley (Hordeum vulgare) [43-103-116]. Others, considered recalcitrant, 
present a low or very low response, and in other cases, a protocol to efficiently induce this process is still pending to be 
developed, as for scientifically or agronomically important species such as Arabidopsis thaliana or tomato (Solanum 
lycopersicum), respectively [51]. Many other species are in between these two extreme situations, being possible to 
induce microspore embryogenesis, but with yet improvable protocols [51]. Woody species are good examples of 
materials where some success has been achieved, but there is still a large room for improvement [43-103-116].  

Even within a species, there will be varieties, lines and even individuals that respond differently [43-103-116]. This 
strong influence of the genotype, together with the fact that this trait is transmitted across generations and segregates 
in the hybrids offspring indicates that it is under genetic control [43-103-116]. Furthermore, it was proposed that, at 
least for Brassica napus, the embryogenic competence of microspores is controlled by two loci with additive effects [43-
103-116]. The gene or genes involved, however, remain to be elucidated [43-103-116].  

Anther culture is the most universal method to produce DHs [43-103-116]. It is technically simple, consisting basically 
of the steps: (1) flower bud collection, (2) isolation of anthers from flower buds, (3) inoculation and in vitro culture in 
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agar-based culture medium, (4) isolation of embryos, (5) regeneration of plants, and (5) analysis of regenerants [43-
103-116]. Few weeks (months in many cases) after, microspore-derived embryos may be seen to emerge from anther 
walls, in parallel to the degradation and necrosis of these walls [43-103-116]. In general, a given anther under optimal 
culture conditions may give rise to several tens of microspore-derived embryos during several months of culture [43-
103-116]. The presence of these walls (the tapetum principally) during the first stages of anther culture may protect 
and help microspores to undergo the first stages of haploid development, in a way similar to how they assist normal 
microspore development in vivo [43-103-116]. Perhaps, this is the reason why anther culture works in many different 
species, including those where other DH methods do not work [43-103-116].  

However, anther cultures are not devoid of limitations [43-103-116]. Perhaps, the main limitation comes from the fact 
that microspores are cultured together with anther walls [43-103-116]. Anther walls (the tapetal layer mostly) may 
secrete molecules that may protect microspores or promote their growth, but it may also secrete inhibitory or even 
toxic compounds, as is the case of necrosing anther tissues [43-103-116]. In any case, this secretary effect is 
uncontrollable in essence, and makes difficult a strict control of culture conditions. Moreover, when exposed to growth 
regulators, these walls are able to proliferate in vitro, producing calli [43-103-116]. Indeed, some parts of the anther, 
such as the filament insertion, are especially prone to form calli when in vitro cultured [43-103-116]. Therefore, can not 
rule out the possibility of occurrence of somatic embryos (very rare but possible) and calli (much more frequent) from 
anther walls [43-103-116]. This implies that for every single plant confirmed as diploid (2C DNA content) by flow 
cytometry [43-103-116].  

3. Anther culture in Cannabis sativa 

Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and 
parental lines in hybrid seed productions [43-52-103-116]. Double haploids (DH) plant production methods are widely 
used in crop breeding and research programs because of their ability to produce genetically pure lines in one generation 
[43-52-103-116]. The production of doubled haploids (DH) in cannabis would be highly advantageous, as it would be 
possible to produce female pure lines in one generation [43-52-103]. Haploid plants have in other plant species been 
produced via androgenesis (anther or microspore culture), gynogenesis, parthenogenesis or wide hybridization-
chromosome elimination [43-52-103-116]. Later chromosome duplication in the haploid plants is performed, either 
spontaneously or by chemical treatment, colchicine, oryzalin, caffeine, trifuralin, or phosphoric amides) or gaseous i.e. 
nitrous oxide [43-52-103]. Although double haploids (DH) production via microspore culture has been investigated in 
cannabis, successful double haploids (DH) production has so far not been established [105]. Cannabis seems to be 
recalcitrant to androgenesis induction, although very few embryos can be developed [106]. The method used for 
successful doubled haploid production seems to be species dependent where for also the other methods should be 
investigated for their usefulness in cannabis [104, 105, 106]. Recently, CRISPR/ Cas have been used to develop haploid-
inducer lines in both monocot and dicot plants [49]. As also suggested by others, this method might be very useful in 
cannabis [43-49- 104-108].  

The study reported by Tonolo and Ambra (2024) [104] have examined two cultivars, a THCA-dominant cultivar and a 
CBDA-dominant line for the diploid haploid (DH) regeneration [104]. Callus induction success varied, with 29.48% for 
the THCA cultivar and 71.08% for the CBDA genotype with a regeneration success of 14.45% in 17 weeks for the latter. 
Mixoploidy in the callus indicated spontaneous genome doubling, while genetic testing confirmed DH nature of the 
regenerants [104]. This is the first report documenting the successful induction of DH. C. sativa plants through de-novo 
indirect organogenesis [104]. These findings have profound implications for the C. sativa breeding sector by potentially 
improving efficiency of genome editing and hybrid development in this economically significant species [104].  

The study reported by Tonolo and Ambra (2024) [104] successfully induced callus growth from C. sativa anther culture, 
induce indirect de-novo shoot and root organogenesis from the obtained callus, and ultimately regenerate and 
acclimatize several plants with this system [104]. The investigations based on the ploidy tests could tell us more about 
the underlying processes occurring during the in-vitro C. sativa culture. Indeed, while the ploidy measurements did not 
reveal haploid cells, the results were fundamental for documenting and understanding the shifts of ploidy levels 
necessary for this process to be successful [104]. On the other hand, the genetic test was fundamental to confirm the DH 
nature of the obtained plants [104]. To the best of our knowledge, this is the first report on the successful induction of 
double haploids in C. sativa leveraging protocols that can regenerate plants via the indirect de-novo organogenesis 
pathway [104]. Overall, the designed culture system has several advantages, making it an extremely valuable asset for 
the C. sativa breeding sector [104].  

There are two main examples of totipotency, somatic or gametophytic, each of which can take two different 
developmental routes: the embryogenesis or the de-novo organogenesis pathway [104]. The main differences are 
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determined by the type of cells that can proliferate and the developmental route which leads to a fully regenerated 
plant. The origin cells can be either gametes or somatic cells [104]. At the same time, the developmental route can either 
involve the generation of an embryo or the differentiation of the meristematic center in different organs [104]. In the 
case of somatic regeneration, the cells originate from a diploid vegetative tissue [104]. The regenerated plant generally 
presents the same genetic profile and ploidy level as the donor plant, although this process can also contribute to 
generating plants with new characteristics due to somaclonal variation [104]. Therefore, this culture system is a 
gateway to unlock the potential of modern genome editing techniques on Cannabis sativa, enabling the development of 
new cultivars at a quicker pace and more cost-effectively while at the same time providing the much-needed genetically 
healthy and stable starting material for F1 breeding pipelines [104].  

On the other hand, gametophytic proliferation is a form of totipotency based on the proliferation of the male or female 
haploid gametes and the associated cells [43-49- 104-108-116]. In this case, the cells that proliferate are derived from 
meiosis, and therefore, they represent the haploid segregant progeny of the donor plant [43-49- 104-108-116]. Apart 
from having a unique genetic profile, these cells have a different ploidy level as they are generated by a haploid 
reproductive cell [43-49- 104-108-116]. These ploidy levels and genetic profile changes have been used in several ways 
to advance the human understanding and exploitation of plants’ survival strategies [43-49- 104-108-116]. Indeed, once 
a haploid plant is generated and it undergoes genome doubling spontaneously or artificially, a so-called double haploid 
(DH) is obtained. Because of this process, the resulting DH plant is completely homozygous and obtained in just one 
generation [43-49- 104-108-116]. The double haploid plants have been exploited by scientists to develop immortalized 
molecular mapping populations, to fix traits obtained through genome editing techniques quickly, or to simplify genome 
sequencing by eliminating heterozygosity [43-49-104-108-116]. Moreover, DH technology has proven paramount for 
the breeding sector, given the quickness in the generation of homozygous lines for F1 hybrid production, the rapid fixing 
and introgression of new traits and the exploitation of the gametoclonal variation and in-vitro selection system to 
decrease time, labour, and costs of plant-breeding programs significantly [43-49- 104-108-116].  

The most widely extended approaches to obtain double haploids (DH) have traditionally been based on the use of 
haploid cells of male and female origin to induce their development as haploid embryos by the application of different 
stresses in vitro and their subsequent in vitro culture [43-52-108-116]. They are the so-called in vitro approaches [43-
52-103-116]. The production of haploid/DH plants from male haploid cells is commonly known as induction of in vitro 
androgenesis, whereas production of haploid/ double haploids (DH) plants from female haploid cells is commonly 
known as induction of in vitro gynogenesis [43-52-103-116]. The different strategies have in common the blockage of 
the normal development of these cells, whose natural fate is the production of functional gametes or accessory cells, 
and their in vitro reprogramming towards a different developmental fate, which is to become embryos without 
fertilization [43-52-103-116]. This way, haploid and/or double haploids (DH) individuals can be produced in vitro [43-
52-108-116].  

To be induced to embryogenesis, microspores/pollens must be stressed. The need for application of physicochemical 
stress treatments seems common to all inducible species. The variety of responses, depending principally on the 
genotype but also on the developmental stage of the microspore/pollen, makes that each species has its own specific 
inductive treatments to trigger the developmental switch. Some of these stresses (heat, cold or starvation) are common 
to many species, whereas others need more specific stressors or combinations of them [37]. As a rule of thumb, the 
more recalcitrant a species is, the more combined and more intense stresses are needed. Typically, induction of 
microspore embryogenesis produces microspore-derived. 

Galán-Ávila et al., (2021) [106] confirmed that the pollen grain has traditional breeding and taxonomy, it takes exclusive 
prominence in androgenesis [43-52-106]. Through this technique, it is possible to obtain 100% homozygous inbred 
lines in only one in vitro generation, thus allowing for fixation of traits and accelerating cultivars development [43-52-
106-116]. These plants are derived from a haploid nucleus of male origin and after spontaneous or induced 
chromosome doubling, double haploids are obtained [43-52-106-116]. By means of hybridization of these pure lines, it 
is possible to exploit the hybrid vigor, obtaining high yielding and uniform F1 hybrid material [43-52-106-116]. One of 
the routes that leads to androgenesis is microspore embryogenesis, by which the microspore deviates from its original 
gametophytic fate and it is reprogrammed to a new pathway of embryogenic development [43-52-106-116]. Galán-
Ávila et al., (2021) [106] also reported that the most relevant factors affecting microspore embryogenesis, is the 
microspore and pollen stage of development [43-52-106]. It is widely accepted how vacuolate microspores and young 
bi-cellular pollen grains are more sensitive to the androgenic induction [43-52-106-116]. On the other hand, it has been 
demonstrated in different species how microspore and pollen stage of development can be correlated with some 
features of the flower, as is the case of bud length, pedicel length, anther length and petal to anther ratio in Brassica 
napus, bud length and perianth morphological markers in Solanum lycopersicum, pigmentation degree of anthers and 
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calyx-corolla ratio in Capsicum annuum, or more recently, flower bud size in Stevia rebaudiana Bertoni, and bud length, 
anther color, and filament length in Opuntia ficus-indica L. Mill [43-52-106-116].  

Furthermore, stress treatments are also described as highly relevant on microspore embryogenesis [43-52-106]. 
Among the most popular stress treatments, cold shock is the most frequently employed to promote microspore 
embryogenesis in a wide range of species [43-52-106-116]. The low temperatures stimulate the expression of two heat-
shock proteins (HSP) genes which possibly can protect cells against chilling injuries [43-52-106]. In general, cold-shock 
can be considered as more effective in terms of embryogenically induced microspores when applied directly to the 
flower buds [43-52-106].  

On the other hand, in order to develop an experimental microspore culture protocol to induce microspore 
embryogenesis in Cannabis sativa, the correlation of the different developmental stages of microspores and pollen 
grains with bud length was studied [43-52-106]. Furthermore, Galán-Ávila et al., (2021) [106] also studied the 
androgenic potential of Cannabis sativa through the microscopic analysis of the amyloplasts contained in anthers, 
microspores and pollen grains [43-52-106].  

Galán-Ávila et al., (2021) [106] confirmed that Cannabis sativa is an appropriate candidate for microspore and pollen 
embryogenesis [106]. Galán-Ávila et al., (2021) [106] also reported that the presence of starch in Cannabis sativa 
microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis [106]. 
Although at a low frequency, cold-shock pre-treatment applied on buds can deviate the naturally occurring 
gametophytic pathway toward an embryogenic development [106]. This represents the first report concerning 
androgenesis induction in Cannabis sativa, which lays the foundations for double haploid research in this species [106]. 

4. Tissue Culture Studies in Cannabis sativa 

On the basis of literature survey, most of the tissue culture studies on Cannabis sativa has reported as recalcitrant [118-
152]. The good news is that the literature on tissue culture studies of Cannabis sativa is slowly warming up [118-152]. 
There are studies highlighting successful Cannabis sativa organogenesis but the commercial scale production is still a 
problem [118-152]. Till today there are no reports on the induction of somatic embryogenesis in Cannabis sativa. Direct 
de-novo organogenesis often appears to yield good results, while indirect regeneration via callus formation generally 
has regeneration rates that are absent or relatively low [118-152]. The failures of the last 20 years and the challenges 
faced by the scientists, therefore, prompted the researchers to classify Cannabis sativa as a recalcitrant species to plant 
regeneration and DH induction [118-152].  

Tissue culture technique depends mainly on the concept of totipotentiality of plant cells, which refers to the ability of 
single cell to express the full genome by cell division [153-262, 266-270]. The totipotency of somatic plant cells is a 
specific and scientifically exciting phenomenon, which is based on the developmental program of plants [153-262-270]. 
It can be best demonstrated in an in vitro system where somatic plant cells can regain their totipotency and are capable 
of forming embryos through the developmental pathway of somatic embryogenesis [153-262, 266-270]. Under in vitro 
conditions, one or a few somatic cells of the plant or explants have to be competent to receive a signal (endogenous or 
exogenous) [153-262-270]. This triggers the reprogramming of plant cells into the pathway of embryogenic 
development (commitment) leading to somatic embryo formation [153-262-270]. The controlled conditions provide 
the culture of explants on a defined nutrient medium with the source of carbohydrate in an environment conducive for 
their growth and multiplication [153-262-270]. These conditions include proper supply of nutrients, source of 
carbohydrate, pH of the medium, adequate temperature, proper gaseous and liquid environment [153-262-270]. 

Recalcitrant is very common in many plant species under in vitro conditions [153-262]. But many recalcitrant plant 
species have been cloned successfully via organogenesis or somatic embryogenesis [153-262-270]. This could be 
possible only by reprogramming the cell pathway towards somatic embryogenesis [153-262-270]. There are many 
signalling molecules which can re-programme the dipoloid (somatic cell) cell to somatic embryogenesis [153-262-270]. 
The totipotency of somatic plant cells is a specific and scientifically exciting phenomenon, which is based on the 
developmental program of plants [153-262-270]. Many of the recent studies showed that signaling molecules such as 
butenolide, calcium ions, salicylic acid, antioxidants, amino acids, triacontanol, melatonin, and 24-epibrassinolide all 
play an important role in the conversion of somatic cells into an embryogenic pathway in many recalcitrant pines, and 
tree species [153-262-270]. It can be best demonstrated in an in vitro system where somatic plant cells can regain their 
totipotency and are capable of forming embryos through the developmental pathway of somatic embryogenesis [153-
262]. Another important factor is that one has to develop natural or synthetic precursor molecules which can trigger 
and reprogramming of the cells towards somatic embryogenesis [153-262-270]. These precursor molecules can break 
the recalcitrant nature of plant cells and resulted in successful organogenesis or somatic embryogenesis [153-262]. 
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However, the interaction studies of new precursor molecules with plant cells under in vitro conditions is a long term 
study which needs funding, good laboratories facilities, well trained scientists particularly in the field of somatic 
embryogenesis and challenging too [153-262-270]. Some times, these studies might end up as experimental models and 
commercialization is still a bottleneck [153-262]. Therefore, commercialization of plant tissue protocols in many plant 
species is a major problem and challenging too [153-262-270]. Artificial neural networks (ANNs) are widely used in 
science and technology, and have been successfully applied in cannabis plant tissue cultures [16, 17]. Furthermore 
Artificial neural networks (ANNs) can also simulate the growth of plants under different in vitro conditions [16, 17]. 
However, very few and limited in vitro regeneration protocols have been developed in cannabis and existing protocols 
highlights only organogenesis [118-152]. Therefore, there is a golden opportunity for the development of new in vitro 
regeneration protocols particularly induction of somatic embryogenesis, cryopreservation, protoplast isolation and 
culture, genetic transformation, production of synthetic seeds, and anther culture for the production of haploids in 
cannabis [153-262].  

5. Conclusion 

Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and 
parental lines in hybrid seed productions. However, some bottlenecks— low induction rate, genotype dependency, 
albinism restrict the widespread utilization of in vitro anther culture in Cannabis sativa breeding, especially in Medical 
Cannabis sativa and hemp fibre type genotypes, while an improved efficient protocol can shorten the process of 
breeding. However, the practical application of this technology in Cannabis sativa improvement is still limited by various 
factors that influence culture efficiency. The most widely extended approaches to obtain double haploids (DHs) have 
traditionally been based on the use of haploid cells of male and female origin to induce their development as haploid 
embryos by the application of different stresses in vitro and their subsequent in vitro culture. They are the so-called in 
vitro approaches. The production of haploid/DH plants from male haploid cells is commonly known as induction of in 
vitro androgenesis, whereas production of haploid/DH plants from female haploid cells is commonly known as induction 
of in vitro gynogenesis. Furthermore, haploid cells of both male and female origins have been used to produce double 
haploids (DHs) in vitro, although with different success rates. In general, the haploid cells where in vitro haploid/DH 
induction has been the most successful are male microspores and female egg cells. In particular, in vitro production of 
androgenic double haploids (DHs) has been more successful than production of gynogenic DHs. Double haploids (DH) 
research has advanced considerably and facilitated the release of large number of cultivars, mostly in Brassica and 
cereals. Research led to great understanding of the genetics and mechanisms of haploid induction, identifying factors 
influencing haploid induction, finding useful markers (morphological, biochemical and DNA markers) to detect putative 
haploids, and increasing genetic gains through the use of DH technology in plant breeding.  
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